14、按边分不等边三角形;等腰三角形;等边三角形。
15、3 公式简介 编辑已知三角形底a,高h,则S=ah/2已知三角形三边a,b,c,则s=1/4*√[2(a^2b^2+ a)(p - b)(p - c)] (海伦公式)(p=(a+b+c)/2)和:(a+b+c)*(a+b-c)*1/4已知三角形两边a,b,这两边夹角C,则S=absinC/2设三角形三边分别为a、b、c,内切圆半径为r则三角形面积=(a+b+c)r/2设三角形三边分别为a、b、c,外接圆半径为r则三角形面积=(1/2)*底*高已知三角形三边a、b、c,则S= √{1/4[c^2a^2-((c^2+a^2-b^2)/2)^2]} (“三斜求积” 南宋秦九韶)| a b 1 |S△=1/2 * | c d 1 || e f 1 |【| a b 1 || c d 1 | 为三阶行列式,此三角形ABC在平面直角坐标系内A(a,b),B(c,d), C(e,f),这里ABC| e f 1 |选区取最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值,如果不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三角形面积的大小。
16、本题考点:三角形面积思路分析:三角形的面积=(底乘高)/2 。
17、难 易 度:中[1]4 重要线段 编辑中线三角形的一个顶点与它的对边中点的连线,平分三角形的面积的这条线叫做三角形的中线。
18、高过三角形的顶点作对边的垂线,垂足与顶点间的线段叫三角形的高线。
19、角平分线三角形的内角的平分线与对边的交点和这个内角顶点之间的线段叫三角形的角平分线中位线任意两边中点的连线。
20、它平行于第三边且等于第三边的一半。
21、[1][4]5 边角关系 编辑三角函数给出了直角三角形中边和角的关系,可以用来解三角形。
22、三角函数是数学中属于初等函数中的超越函数的一类函数。
23、请参考相关词条。
24、6 基本性质 编辑角1° 三角形的内角和等于180°(内角和定理);2° 三角形的外角和等于360° (外角和定理);3° 三角形的外角等于与其不相邻的两个内角之和。
25、推论:三角形的一个外角大于任何一个和它不相邻的内角。
26、4° 一个三角形的三个内角中最少有两个锐角。
27、5° 在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度。
28、边6° 三角形两边之和大于第三边,两边之差小于第三边。
29、7° 直角三角形的两条直角边的平方和等于斜边的平方(勾股定理)。
30、勾股定理逆定理:如果三角形的三边长a,b,c满足a²+b²=c² ,那么这个三角形是直角三角形。
31、8° 直角三角形斜边的中线等于斜边的一半。
32、9° 三角形的三条角平分线交于一点,三条高线的所在直线交于一点,三条中线交于一点。
33、10° 三角形三条中线的长度的平方和等于它的三边的长度平方和的3/4。
34、11° 等底同高的三角形面积相等。
35、12° 底相等的三角形的面积之比等于其高之比,高相等的三角形的面积之比等于其底之比。
36、13° 三角形的任意一条中线将这个三角形分为两个面积相等的三角形。
37、14° 等腰三角形顶角的角平分线和底边上的高、底边上的中线在一条直线上(三线合一)。
38、其他15° 在同一个三角形内,大边对大角,大角对大边。
39、16° 在斜△ABC中恒满足:tanA·tanB·tanC=tanA+tanB+tanC。
40、17° △ABC中恒有。
41、18° 三角形具有稳定性。
本文分享完毕,希望对你有所帮助。
免责声明:本文由用户上传,如有侵权请联系删除!